
Abstract— In this paper we argue that widely shared data are a more
serious problem than previously recognized, and that furthermore, it is
possible to provide transparent support that actually gives an advan-
tage to accesses to widely shared data by exploiting their redundancy
to improve accessibility. TheGLOW extensions to cache coherence pro-
tocols —previously proposed— provide such support for widely
shared data by defining functionality in the network domain. However,
in their static form theGLOW extensions relied on the user to identify
and expose widely shared data to the hardware. This approach suffers
because: i) it requires modification of the programs, ii) it is not always
possible to statically identify the widely shared data, and iii) it is
incompatible with commodity hardware. To address these issues, we
study three dynamic schemes to discover widely shared data at run-
time. The first scheme is inspired by read-combining and is based on
observing requests in the network switches — theGLOW agents. The
agents intercept requests whose addresses have been observed
recently. This scheme tracks closely the performance of the static
GLOW while it always outperforms ordinary congestion-based read-
combining. In the second scheme, the memory directory discovers
widely shared data by counting the number of reads between writes.
Information about the widely shared nature of data is distributed to
the nodes which subsequently use special wide sharing requests to
access them. Simulations confirm that this scheme works well when
the widely shared nature of the data is persistent over time. The third
and most significant scheme is based on predicting which load
instructions are going to access widely shared data. Although the
implementation of this scheme is not as straightforward in a commod-
ity-parts environment, it outperforms all others.

1    Introduction
Shared-memory multiprocessing is only attractive if it can support a
programming paradigm and programming languages efficiently.
Numerous studies have characterized the sharing patterns of pro-
grams that have been written for such multiprocessors [25], and it is
generally believed that widely shared data occur infrequently and do
not significantly affect performance.

In this paper we argue that in fact widely shared data inherent in
some parallel algorithms are a more serious problem than previ-
ously recognized, and that furthermore, it is possible to provide
support that actually gives an advantage to widely shared data. The
idea of read-combining [11] evolved because of the concern for
network contention for widely shared data. Read-combining is
highly dynamic, and reduces traffic in the network by recognizing

that simultaneous requests can be merged. The probability of
occurrence of simultaneous requests only becomes a factor when
serious network contention extends the latency of individual
requests, and in general, the best that combining can hope to
achieve is a reduction in latency of access to widely shared data to
the latency that would be experienced in an unloaded network.

However, it is possible to access widely shared data even faster than
non-widely shared data. The presence of redundant copies of a
datum in multiple caches throughout the system offers this possibil-
ity. This situation has some resemblance to cache-only machines
[12], where data is quickly accessed if it resides in a cache close to
the requester. If some data that is needed by a node are widely
shared, it is likely that a cached copy of the data is closer than the
original data in the home node. If an architecture can exploit this fact
to improve accessibility of widely shared data, programmers would
find that the best algorithms make extensive use of widely shared
data rather than eschewing. Thus the potential for systems that pro-
vide high-quality support for widely shared data may be much larger
than would be indicated by a sample of current shared-memory pro-
grams, which generally avoid such data wherever possible.

Several classes of sharing patterns in shared-memory applications
have been identified (migratory, read-only, frequently-written sharing,
etc.)[25]. Hardware protocols (e.g, pairwise sharing and QOLB [9] in
SCI [1]) or software protocols, or application specific protocols have
been devised to deal with such patterns effectively. Widely shared
data that are read simultaneously by many —usually all— processors
is a distinct sharing pattern that imposes increasingly significant over-
head as systems increase in size [15]: when all processors read widely
shared data there is much contention in the home node for servicing
the requests as well as in the network around the home node which
becomes a hot spot [22]; similarly, when the widely shared data are
written there is a large number of invalidations (or updates) to be sent
all over the system (i.e., non-locally). For many systems with no pro-
vision for efficient broadcast or multicasts these invalidations con-
sume much network bandwidth, perhaps in a wasteful manner.

Previously, scalable coherence protocols have been proposed
[13,20,21] but they were applied indiscriminately on all data. This
diminishes the potential benefit since the overhead of the more
complex protocols is incurred for all accesses. A tree-directory
cache coherence protocol scales better than those based on central-
ized or linear list directories, but building a sharing tree does not
come for free and doing so for data that are not widely shared may
result in performance degradation for the most common access
patterns. Only when the number of nodes that participate in the
sharing tree is large, the overhead is sufficiently leveraged.

Bianchini and LeBlanc distinguished widely shared data (“hot” data)
from other data in their work [5]. Similarly, theGLOW extensions for
cache coherence protocols [15,16] are intended to be used exclusively
for widely shared data. The distinguishing characteristic of theGLOW
extensions is that they create sharing trees very well mapped on top of
the network topology of the system, thus exploiting “geographical
locality” [16]. Bennett et al also distinguished widely shared data in
their work with proxies [4]. However, in all the aforementioned work
widely shared data were statically identified by the user (the program-
mer or, potentially, the compiler). Such static methods of identifying
widely shared data have three major drawbacks: i) user involvement
complicates the clean shared-memory paradigm, ii) it may not always
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be possible to identify the widely shared data statically, and most
importantly iii) mechanisms are required to transfer information from
the user to the hardware; these mechanisms are hard to implement
when the parallel system is built with commodity parts. This last con-
sideration is crucial since vendors must leverage existing commodity
parts (e.g., processors, main-boards, and networks) in order to drive
development costs down and shorten the time-to-market.

Because of these reasons, in this paper we discuss how well we can
dynamically identify and handle widely shared data. We propose
and study three dynamic schemes to detect widely shared data. For
reference we include in our comparisons congestion-based read-
combining. The three novel schemes differ in where and how the
detection takes place:

AGENT DETECTION : In this scheme (also discussed in [17]) the
request stream is observed in the network, at the exact places where
theGLOW extensions are implemented (namely atGLOW agents that
are switch nodes in the network topology). Changes are required
only in theGLOW-specific hardware without affecting other parts of
the system making it the most transparent of the three dynamic
schemes. Requests for widely shared data can be identified in the
request stream if their addresses are seen often enough. TheGLOW
extensions are then invoked for such requests as in the staticGLOW.
This technique is similar in spirit to combining [11], but can better
exploit requests scattered in time because the critical information
hangs around in the combining node after a request is gone.

DIRECTORY DETECTION : In this scheme the directory is responsi-
ble for identifying widely shared data. This scheme resembles the
limited pointer directories such as DiriB [2]. These directories
switch from point-to-point messaging to broadcasting if the num-
ber or readers exceeds a threshold. Similarly in our scheme, the
directory detects widely shared data (by keeping track of the num-
ber of readers) but —instead of broadcasting— it informs the nodes
in the system about the nature of the data. After the nodes learn that
an address is widely shared they use theGLOW extensions to access
it. This DIRECTORY DETECTION scheme depends on widely shared
data remaining as such through multiple read-write cycles.

INSTRUCTION -BASED (PC) PREDICTION : The last scheme is a novel
method based on predicting which load instructions are likely to
access widely shared data according to their past history. Instruc-
tion-based (PC) prediction is well established in uniprocessors but
it has only been used for prefetching in multiprocessors [6]. This
scheme does have implementation difficulties for commodity pro-
cessors but on the other hand it is the most successful scheme we
have studied.

The rest of this paper is organized as follows: In Section 2 we further
motivate the importance of widely shared data and introduceread-
run analysis. For the benefit of the reader unfamiliar with howGLOW
handle widely shared data, we give a very brief description in Section
3. In Section 4 we expand on the problems associated with the static
methods of identifying widely shared data. We introduce the
dynamic methods in Section 5. In Section 6 and Section 7 we present
our evaluations and results. Finally, we conclude in Section 8.

2     Implications of widely shared data
When widely shared data exist they are usually a very small percent-
age of the dataset of a program. Studies have also shown that the
average degree of sharing (the number of nodes that simultaneously
share the same data) in application programs is low [25]. These
observations however, do not indicate the serious performance deg-
radation resulting fromaccessing such data. Even if widely shared
data are a negligible percentage of the dataset they can be detrimen-
tal to performance because the number ofreads (or invalidates) cor-
responding to such data can be excessively large: widely shared data
imply that a great many processors read them simultaneously.

To make this point clear we use the concept ofread-runs as a tool
to investigate sharing behavior (in Section 7 we are making exten-
sive use of read-run analysis to explain the performance of the var-
ious schemes). Analogous to awrite-run [8], we define a read-run

for a data block as a sequence of reads (from any processor)
between two writes (from any processor). The size of a read-run is
thus directly related to the number of simultaneous cache copies in
the system (if we ignore for a moment multiple reads because of
replacements). In Figure 1 we show the sharing behavior of the
GAUSS program running on 128 nodes (discussed further in Section
6). The left graph in Figure 1 is the read-run histogram forGAUSS.
The horizontal axis is the read-run size and the vertical axis is the
number of times a read-run appears in the execution of the pro-
gram. Despite the fact that the number of read-runs of size 128
(corresponding to widely shared data) is negligible, and despite the
modest degree of sharing of 2.75, about one half of all the reads (or
alternatively invalidates) in the program correspond to widely
shared data. The abundance of reads (invalidates) corresponding to
widely shared data is evident in the right graph of Figure 1 which
shows the number of accesses (reads or invalidates) that corre-
spond to read-runs of various sizes (horizontal axis). The explana-
tion for this is that each read-run of sizeW impliesW reads orW
invalidates and even the very few but large read-runs encompass as
many reads and invalidates as a great number of small read-runs.

Not only the accesses to widely shared data are numerous but they
are also the most expensive in terms of latency because they create
contention in the network and even worse contention in the home
node directories of the data.When many nodes simultaneously
access a single data block, each experiences much greater latency
than if all nodes accessed different data blocks in different home
node directories. Thus providing support for such accesses is
essential for scalability.

3 GLOW  extensions
TheGLOW extensions provide support for widely shared data. They
are independent of how the widely shared data are exposed to the
hardware. For purposes of discussing the extensions we assume
that special requests are used to access widely shared data. In sub-
sequent sections we describe how to generate such special requests
either statically or dynamically.GLOW extensions improve on pre-
vious efforts (EC [5], STP [21], STEM [13]) by embodying the
following four characteristics:

Protocol-transparency: The GLOW extensions are not a protocol
themselves but rather a method of converting other protocols to han-
dle widely shared data. The functionality of theGLOW extensions is
implemented in selected network switch nodes calledGLOW agents
that intercept special requests for widely shared data. These nodes
behave both as memory and cache nodes using the underlying cache
coherence protocol recursively: toward a local cluster of nodes they
service,GLOW agents impersonate remote memory nodes; toward the
home node directory, agents behave as if they were ordinary caches.

Geographical Locality: A sharing tree out of theGLOW agents and
other caches in the system is constructed to match the tree that
fans-in from all the sharing nodes to the actual home node of the
widely shared data.GLOW captures geographical locality so that
neighboring nodes in the sharing tree are in physical proximity.

Scalable reads: Since theGLOW agents intercept multiple requests
for a cache block and generate only a new request toward the home
node, a combining effect is achieved, eliminating hot spots [22].

Scalable writes: Upon a write,GLOW invokes in parallel the under-

FIGURE 1. read-run histogram and corresponding accesses
(Reads/Invalidations) forGAUSS running in 128 nodes.
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lying protocol’s invalidation or update mechanisms: on receipt of an
invalidation (update) message, an agent starts recursively the invali-
dation (update) process on the other agents or nodes it services. The
parallel invalidation (update), coupled with the geographical locality
of the tree permits fast, scalable writes that require low bandwidth.

3.1 GLOW  extensions toSCI
The first implementation ofGLOW [16] is done on top of Scalable
Coherent Interface (SCI) [1] —unlike most other directory-based
protocols (such asDASH [18]) that keep all the directory information
in memory,SCI distributes the directory information to the sharing
nodes in a doubly-linked sharing list. The sharing list is stored with
the cache lines throughout the system. A version of this implemen-
tation (described in [15]) defines the functionality of network
switch nodes and it is fully compatible with currentSCI systems.

SCI has two characteristics that make it an ideal match forGLOW. The
first is that its invalidation algorithm is serial and a tree protocol is
especially attractive for speeding up writes to widely shared data. The
second concernsSCI topologies.SCI defines a ring interconnect as a
basic building block for larger topologies.GLOW extensions can be
implemented on top of a wide range of topologies constructed ofSCI
rings, including hypercubes, meshes, trees, butterfly topologies, and
many others.GLOW can also be used in irregular topologies (e.g., an
irregular network of workstations). In this paper, we studyGLOW on
highly scalable k-ary n-cube topologies [10] constructed of rings. As
we mentioned in the general description, allGLOW protocol process-
ing takes place in strategically selected switch nodes (theGLOW
agents) that connect two or moreSCI rings in the network topology.

GLOW agents cache directory information; caching the actual data
is optional. Multilevel inclusion [3] is not enforced to avoid proto-
col deadlocks in arbitrary topologies. This allows great flexibility
since the involvement of theGLOW agents is not necessary for cor-
rectness: it is at the discretion of the agent whether it will intercept
a request or not. Details on how the sharing trees are created and
invalidated are described in [15] and in [16].

4    Static approaches for wide sharing
In the previous section we described theGLOW extensions to handle
requests for widely shared data. TheGLOW mechanisms are indepen-
dent of how the widely shared data are distinguished from other data.
Here, we describe the static methods to define the widely shared data
(also discussed in [16]). Identifying the widely shared data in the
source program is only the first step. The appropriate information
must then be passed to the hardware so special requests for widely
shared data can be generated and invoke theGLOW agents. We divide
the static methods depending on whether the programmer identifies
thedata that are widely shared or theinstructions that access such
data. The following two subsections describe the two alternatives.

Identifying addresses: This is the simplest method to implement
and we have used it for the evaluations in later sections. A possible
implementation of this method uses address tables, structures that
store arbitrary addresses (or segments) of widely shared data. The
address tables can be implemented in the network interface or as
part of the cache coherence hardware. In both cases the user must
have access to these tables in order to define and “un-define”
widely shared data. Implementing such structures, however, is not
trivial because of problems relating to security, allocation to multi-
ple competing process, and address translation. The address tables
could be virtualized by the operating system, but this solution is
also unsatisfactory since (i) it requires operating system support
and (ii) it will slow down access to these tables.

Identifying instructions : If specific code is used to access widely
shared data, the programmer can annotate the source code and the
compiler can generate memory operations for this code that are
interpreted as widely shared data requests. We have proposed the
following implementations:
• COLORED OR FLAVORED LOADS: The processor is capable of

tagging load and store operations explicitly. Currently this
method enjoys little support from commercial processors.

• EXTERNAL REGISTERS: A two-instruction sequence is
employed. First a special store to an uncached, memory
mapped, external register is issued, followed by the actual
load or store. This special store sets up external hardware that
will tag the following memory operation as a widely shared
data operation. The main drawback of this scheme is that it
requires external hardware close to the processor.

• PREFETCH INSTRUCTIONS: If the microprocessor has prefetch
instructions they can be used to indicate to the external hard-
ware which addresses are widely shared. Again, external
hardware is required close to the processor.

The static approaches are plagued with a number of problems—also
mentioned in the introduction—including the implementation prob-
lems of the hardware interfaces described herein. Thus in the next
section we present dynamic approaches to alleviate these problems.

5    Dynamic approaches for wide sharing
Without the a priori knowledge of the addresses or the instructions
that access widely shared data, this information needs to be discov-
ered at run-time. In this section we describe three schemes to
accomplish this. The first scheme relies exclusively on theGLOW
agents for the detection, the second scheme relies on the memory
directories and the third relies on detecting instructions that access
widely shared data.

5.1  Agent detection
Conceptually aGLOW agent could intercept every request that
passes through and do a lookup in its directory cache. This would
result in slowing down the switch node, polluting the directory
caches with non-widely shared data, and incurring the overhead of
building a sharing tree for non-widely shared data. Instead, we
want to filter the request stream and intercept only the requests that
are likely to refer to widely shared data. The dynamic scheme
described here is intended to perform such filtering.

Agents observe the request traffic and detect addresses that are
repeatedly requested. Requests for such addresses are then inter-
cepted in the same way as the special requests in the static methods.
In an implementation of this scheme each agent, besides its ordi-
nary message queues, keeps a small queue (possibly implemented
as circular queue) of the lastN read requests it has observed. The
queue contains the target addresses of the requests, hence its name:
recent-addresses queue. Using this queue each agent maintains a
sliding window of the request stream it channels through its ports.

When a new request arrives at the agent, its address is compared to
those previously stored in the recent-addresses queue. If the address
is found in the queue the request is immediately intercepted by the
agent as a request for widely shared data. Otherwise, the request is
forwarded to its destination. In both cases its address is inserted in
the queue. This method results in some lost opportunities: for exam-
ple we do not intercept the first request to an address that is later
repeated in other requests. Also, if a stream of requests for the same
address is diluted sufficiently by other intervening requests we fail
to recognize it as a stream of widely shared data requests. This
scheme might also be confused by a single node repeatedly making
the same request frequently enough to appear more than once within
the agent’s observation window (this could happen in producer-con-
sumer or pairwise sharing). A safeguard to protect against this is to
avoid matching requests from the same node against each other.

In the absence of congestion (i.e., when the agent’s message
queues are empty) we need to search the recent-addresses queue in
slightly less time than it takes for a message to pass through the
agent. Since the recent-addresses queue is a small structure located
at the heart of the switch it can be searched fairly fast. Of course,
the minimum latency through the switch will dictate the maximum
size of the queue. For the switches we model in our simulations we
expect that a size of up to 128 entries to be feasible. We have
shown that this scheme is remarkably insensitive to the size of the
recent-addresses queue and even queues as small as four to eight



entries are quite able to distinguish widely shared data [17].

When the agents observe the reference stream only when there is
congestion (in other words when multiple requests are queued in
the agent’s message queues) our method for detection of widely
shared data defaults to read-combining as was proposed for the
NYU Ultracomputer [11]. In this case, the observable requests are
only the ones delayed in the message queues. The problem with
such combining (that our method effectively solves) is that it is
based too much on luck: requests combine only if they happen to
be in the same queue at the same time which might happen only in
the presence of congestion. Combining is highly dependent on the
network timing and queuing characteristics as well as the conges-
tion characteristics of the application [17]. In the Section 7 we
show that we can effectively discover widely shared data using a
sliding window whereas combining fails in most cases.

5.2  Directory detection
In this scheme the memory directory is responsible to discover
widely shared data. In contrast to the previous scheme that is trans-
parent to the rest of the system this scheme requires some modifi-
cations to the coherence protocols. This is feasible in many
commercial or research systems where the cache coherence proto-
cols are implemented as a combination of software and hardware
and they can be upgraded (e.g., STiNG [19]).

The directory is a single point in the system that can observe the
request stream for its data blocks. It is therefore in a position to dis-
tinguish widely shared data. In directories such as DiriX [2] the
number of readers is readily available. However, inSCI where the
directory keeps a single pointer to the head of the sharing list, the
directory must count the number of reads between writes. A counter,
associated with each data block, counts up for each read and it is
reset with a write. Data blocks for which the corresponding counter
reaches some threshold are deemed widely shared. InSCI this is a
heuristic since the directory might incorrectly deem a data block as
widely shared just by seeing multiple reads from the same node.
However, even in this case the involvement of aGLOW agent is
advantageous since it can rectify a pathological replacement situa-
tion by providing caching in the network. Determining whether read
requests actually come from different nodes is possible if we keep a
bitmap of the readers (similarly to DiriX). However, this would be an
expensive addition to theSCI directory and we do not examine it fur-
ther. In our evaluations we extended theSCI directory tag with a
small 2-bit saturating counter.

The first time a data block is widely accessed all the read requests
reach the directory without any intervention from theGLOW agents.
If the directory finds that the data are widely shared it notifies the
nodes in the system so the next time they access the block they will
use special requests that can be intercepted by theGLOW agents. This
information is transferred to the nodes when the data block is written.
Upon a write the directory (or the writer inSCI) sends invalidation
messages that notify the previously reading nodes that this data from
now on is considered widely shared. Only the nodes that participated
in the first read will learn this. The information is stored in each node
in the invalidated caches with a tag value which we call “hot tag.” If a
node tries to access a “hot tag” it will send a request for widely
shared data which will be handled by theGLOW agents. Alternatively,
the information about which data blocks have been found to be
widely shared can be kept in address tables similar to those described
for the staticGLOW. However, address tables would make the whole
scheme more difficult to implement and are not examined further.

This scheme is based on the premise that data blocks are widely
shared for many read-write cycles. Since the opportunity to opti-
mize the first read-write cycle is lost, this scheme does not provide
any performance improvement when data blocks are widely shared
only once. Furthermore, it may degrade performance by incorrectly
treating such data blocks as widely shared when they are not. A fur-
ther consideration about this scheme is that it is easier to adapt from
non-widely shared to widely shared than the other way around. If a
data block is widely accessed only once, the directory will observe

very few read requests between writes after the first read-write
cycle. However, it cannot determine whether it sees very few
requests because the data block is not widely shared anymore or
because theGLOW extensions absorb most of the requests in the net-
work. Even if the directory recognized a transition to a non-widely
shared state, it would have to notify again the nodes in the system
about this change. Fortunately, the “hot tag” concept provides a nat-
ural way to adapt from widely shared to non-widely shared. If the
data block is not widely accessed the “hot tags” around the system
will be replaced —they are invalid tags after all— and the nodes
will lose the information that the block was widely shared.The only
pathological case that can result from the inability of this scheme to
adapt quickly from widely shared to non-widely shared is when the
data block becomes migratory after it was widely shared. In this
case many subsequent reads will incur the overhead of widely
shared data because it will take many read-write cycles to erase the
information about the nature of the data block from all the nodes.
As of yet, we have not encountered this situation in any benchmark.

5.3  Instruction-based prediction
Instruction-based prediction (PC PREDICTION) in various forms has
been proposed as a mechanism to accelerate serial programs. In
this context it comes at a fairly small cost because it can be entirely
encapsulated in the processor die and all the pertinent information
is local. In parallel programs instruction-based prediction has been
proposed for prefetching [6]. In this paper we propose instruction-
based prediction as a mechanism to accelerate parallel programs
with wide sharing. Specifically, we propose a mechanism to pre-
dict which load instructions are likely to access widely shared data.

The prediction is based on previous history: if a load accessed
widely shared data in the past then it is likely to access widely
shared data in the future. This behavior can be traced to the way
parallel programs are structured. For example in Gaussian elimina-
tion the pivot row is widely shared and it accessed in a specific part
of the program. Therefore, once the load instruction that accesses
the pivot row has been identified it can be counted on to continue
to access widely shared data. We have found that this prediction is
very strong for all our benchmarks.

Whether a load accessed widely shared data is judged by its miss
latency: very large miss latency is interpreted as an access to
widely shared data. Using latency as the feed-back information is
not as farfetched as it sounds: we have observed that the access
latency of widely shared data (withoutGLOW support) is signifi-
cantly larger than the average access latency of non-widely shared
data. This is because of network contention and most importantly
because of contention in the home node directory which becomes a
“hot spot.” For example, the latency of 128 requests going to the
same node is much higher that the latency of 128 requests going to
128 different nodes. Microbenchmark results previously reported
[15] confirm this observation. Although the latency criterion does
not guarantee that we will applyGLOW only to widely shared data
or to all widely shared data, it is a valuable criterion because it
appliesGLOW to accesses that are detrimental to performance. The
latency threshold for widely shared data is a tuning parameter that
can be set independently for different applications.

We have chosen to study a simple predictor. The first time a load
misses and its latency is longer than a threshold (that represents the
average latency of the shared-memory system) its PC is inserted in
a small 16-entry fully associative cache with LRU replacement. In
subsequent misses we probe this small cache using the PC of the
load. In case of a hit in the cache we issue a special request for
widely shared data.

Contrary to the uniprocessor/serial-program context where predictors
are updated and probed continuously weonly update the prediction
history and probe the predictor in the case of a miss. This makes the
prediction mechanism much less frequently accessed. Furthermore,
its latency is not in the critical path since we only need its prediction
on misses which are of significant latency anyway. Thus, it is not a
potential bottleneck nor does it add any cycles to the critical path.



There are two choices for the location of such a mechanism: either
inside the processor or outside. When the mechanism is inside the
processor it is updated/probed when a load misses in the internal
(L1) cache. When we have a hit in the prediction cache a special
request for widely shared data is issued outside the processor.
Since the type of the request only matters when we also have a
miss in the external (L2) cache, it may lag a cycle behind the exter-
nal (L2) cache access without degrading performance. The mecha-
nism operates similarly when it is implemented outside the
processor with the assumption that the PC of the corresponding
load instruction is available outside the processor on an external
(L2) cache miss. The resulting request could be delayed one cycle
until a prediction is obtained. However, this cycle can be hidden by
cache coherence protocol or network access latencies. In our study
we do not distinguish between the two implementations since we
model a processor with a single cache and a 16-entry prediction
cache that does not delay the corresponding requests.

Wherever this mechanism is implemented it necessitates a custom
approach: if it is inside the processor it requires a custom designed
core and if it is outside the processor it requires that the PC of a load
that misses be known outside the processor (we are not aware of any
commercial processor with this feature). Despite this drawback we
have two arguments why this method is important to consider: (i) it is
highly successful in the context of this work, and (ii) we believe that
such prediction mechanisms will be increasingly important in opti-
mizing not only widely shared data but various access patterns such
as migratory sharing or producer-consumer sharing — thus the cost
of the prediction hardware will be amortized by many optimizations.

6    Experimental evaluation
A detailed study of the methods we propose requires execution
driven simulation because of the complex interactions between the
protocols and the network. The Wisconsin Wind Tunnel (WWT)
[23] is a well-established tool for evaluating large-scale parallel
systems through the use of massive, detailed simulation. It executes
target parallel programs at hardware speeds (without intervention)
for the common case when there is a hit in the simulated coherent
cache. In the case of a miss, the simulator takes control and takes
the appropriate actions defined by the simulated protocol. The
WWT keeps track of virtual time in processor cycles.SCI has previ-
ously been simulated extensively underWWT [14] and theGLOW
extensions have been applied to this simulation environment.

Hardware parameters: We simulated systems that resembleSCI
systems made of readily available components such asSCI rings and
workstation nodes. We have simulated k-ary n-cube systems from 16
to 128 nodes in two and three dimensions. The nodes comprise a
processor, anSCI cache, memory, memory directory, aGLOW agent,
and a number of ring interfaces. Although we assume uniprocessor
nodes,GLOW applies equally well to symmetrical multiprocessor
(SMP) nodes. In this case theGLOW agent resides in the network
interface of the SMP node and is responsible to service the proces-
sors inside the node. The processors run at 500MHz and execute one
instruction per cycle in the case of a hit in their cache. Each proces-
sor is serviced by a 64KB 4-way set-associative cache with a cache
line size of 64 bytes. The cache size of 64KB is intentionally small
to reflect the size of our benchmarks. Processor, memory and net-
work interface (includingGLOW agents) communicate through a 166
MHz 64-bit bus. TheSCI k-ary n-cube network of rings uses a 500
MHz clock; 16 bits of data can be transferred every clock cycle
through every link. Ring and bus interfaces as well as switches incur
a 10 cycle latency for every message. We simulate contention
throughout the network but messages are never dropped since we
assume infinite queues. EachGLOW agent is equipped with a 1024-
entry directory cache and 64KB of data storage. We stress here that
the agent’s data storage is optional and can be omitted without sig-
nificantly affectingGLOW’s performance [16]. To minimize conflicts
the agent’s directory it is organized as a 4-way set-associative cache.

Benchmarks: To evaluate the performance ofGLOW we used five
benchmark programs:GAUSS, SPARSE, All Pairs Shortest Path,

Transitive Closure, andBARNES. Although these programs are not
in any way representative of a real workload, they serve to show
that GLOW can offer improved performance. Additionally, these
programs represent the core of many scientific applications used
for research in many engineering and scientific disciplines. We did
not consider programs without widely shared data because such
programs would hardly activate theGLOW extensions. TheGAUSS
program solves a linear system of equations (512 by 512 in our
case) using the well known method of Gaussian elimination.
Details of the shared-memory program can be found in [16]. In
every iteration of the algorithm a pivot row is chosen and read by
all processors while elements of previous pivot rows are updated.
For the static method, we define a pivot row as widely shared data
for the duration of the corresponding iteration. TheSPARSE pro-
gram solvesAX=B whereA andB are matrices (A being a sparse
matrix) andX is a vector. The main data structures in theSPARSE
program are theN by N sparse matrixA andX, the vector that is
widely shared (N is 512 for our simulations). In the static method
we define vectorX as widely shared data. The All Pair Shortest
Path (APSP) and the Transitive Closure (TC) programs solve classi-
cal graph problems. For both programs we used dynamic-program-
ming formulations, that are special cases of the Floyd-Warshall
algorithm [7]. In theAPSP, anN vertex graph is represented by an
N by N adjacency matrix. The input graph used for the simulations
is a 256 vertex dense graph (most of the vertices are connected). In
theTC program anN by N matrix represents the connectivity of the
graph with ones and zeroes. The input is a 256 vertex graph with a
50% chance of two vertices being connected. For both programs
and for the static method the whole main matrix is defined as
widely shared data. Finally theBARNES benchmark from the
SPLASH suite [24] is an example of a program with very little
widely shared data that can be identified statically. The main data
structure inBARNES is anoctree [24] whose top is widely shared.
However, in the static version ofGLOW we can only define the root
of the octree as widely shared.

7    Results
In this section we present simulation results for the five programs
and for the various system configurations (2-dimensional and 3-
dimensional networks, 16 to 128 nodes). We use the 3 dimensional
topologies to show how network scalability affects theGLOW
extensions. In general our results show thatGLOW offers greater
performance advantage with higher dimensionality networks
because it can create shorter trees with larger fan-out.

We compareSCI, static GLOW, congestion-based read-combining
(COMBINING) and three versions of the dynamicGLOW. The first ver-
sion employs a 128-entry recent-addresses queue to discover repeti-
tion in the addresses (we refer to this asAGENT DETECTION). In the
second version the directory discovers the widely shared data and we
refer to this asDIRECTORY DETECTION. In the third version we predict
instructions that access widely shared data (we refer to this scheme as
PC PREDICTION). We use a small 16-entry cache and a miss latency
threshold of 1000 cycles to determine which misses correspond to
widely shared data. As a reference the average latency of a “normal”
access ranges from about 400 to 600 cycles for our benchmarks.

We measure execution time, and for each program we present
speedup normalized to a base case. We selected the base case to be
SCI on the appropriate number of nodes and with the appropriate 2-
or 3-dimensional network. The actual speedups over a single node
for the base cases are shown in Table 1. Note here that the pro-
grams we are using do not scale beyond 32 or 64 nodes forSCI. The
GLOW extensions allow these programs to scale to 128 nodes but
the performance difference between 64 and 128 nodes is small. A
limitation of our simulation methodology is that we keep the input
size of the programs constant and —because of practical con-
straints— relatively small. With larger datasets these programs
scale to more nodes for the baseSCI case and theGLOW extensions
yield performance improvements for even larger numbers of nodes.

Figure 2 shows the normalized speedups for theGAUSS program. The



two graphs present results for the 2- and 3-dimensional networks.
GAUSS on SCI does not scale beyond 32 nodes, showing serious per-
formance degradation with higher numbers of nodes. TheGLOW
extensions, however, scale to 64 nodes in 2 dimensions and to 128
nodes in 3 dimensions (although the additional speedup is negligible).

StaticGLOW is up to 2.22 times faster thanSCI in 2 dimensions and
up to 2.44 times faster in 3 dimensions.COMBINING reaches about
halfway the performance improvement of staticGLOW while
AGENT DETECTION remains within 5% of the performance of static
GLOW. TheDIRECTORY DETECTION scheme also works well staying
within 10% of the staticGLOW. UsingPC PREDICTION results in the
largest speedups over SCI (up to 2.27 times in 2 dimensions and up
to 2.82 times in 3 dimensions).

To explain the behavior of the variousGLOW schemes we examine
how they appear to change the read-runs of the program from the
directories’ point of view. Specifically, for each scheme we plot the
reads that correspond to read-runs of different sizes. TheGLOW
schemes “compress” these accesses toward the small read-run
sizes. Each scheme’s “compression” relates to its performance
improvement.

Figure 3 plots the number of reads that correspond to read-runs
ranging in size from 1 to 128. The horizontal axis is the size of the
read-run, the vertical axis is the number of accesses (reads/invali-
dates). The data are forGAUSS on 128 nodes on a 2-dimensional
network. These data represent what theSCI directories observe.
TheSCI directories count the same node multiple times in the same
read-run if —because of replacements— it sent multiple requests,
so the correspondence of the read-run size and the degree of shar-
ing is not exact. Because these graphs contain very large and very
small numbers we selectively use a logarithmic scale in the vertical
axis. This tends to emphasize smaller numbers that would other-
wise be invisible (as in Figures 1 and 9).

TheSCI graph shows a large number of accesses corresponding to
large read-runs.COMBINING, AGENT DETECTION, static GLOW,
DIRECTORY DETECTION andPC PREDICTION all absorb a large num-
ber of requests in the network and as a result the directories see
fewer requests between writes. StaticGLOW compresses many
accesses to read-runs of size 9 (pointed out in the graph). This
number corresponds to 8GLOW agents plus an extra node: for any
widely shared data block in the 2-dimensional 128-node system (8
by 16 nodes) there are 8 agents covering all nodes except the data
block’s home node. In contrast,COMBINING which does not per-
form as well manages to compress the read-runs from a size of 128
down to a size of about 38.AGENT DETECTION manages to com-
press most of the large read-runs to a size of 24. This means that
before all 8GLOW agents are invoked for a widely shared block, 16
requests slip by and reach the directory.DIRECTORY DETECTION
eliminates the largest read-runs and converts them to read-runs of
size 9 (similarly to staticGLOW). However, they still leave a signif-
icant number of accesses corresponding to large read-runs unaf-
fected.PC PREDICTION gives the cleanliest spectrum of read-runs
pushing most of the large ones down to a size of 9.

SPARSE scales to 128 nodes for both 2- and 3-dimensional networks
although the increase in performance from 64 to 128 nodes in 2
dimensions is negligible (see Table 1 and Figure 4). For this pro-
gram AGENT DETECTION outperforms staticGLOW (in the 64- and
128-node systems in 2 dimensions and in the 128-node system in 3

dimensions). This is becauseSPARSE actually contains more widely
shared data than just the vectorX andAGENT DETECTION can handle
them at run-time.AGENT DETECTION performs up to 1.29 times
faster thanSCI in 2 dimensions and up to 1.33 times faster in 3
dimensions.COMBINING fails to provide any significant performance
improvement andDIRECTORY DETECTION performs on a par with
staticGLOW. PC PREDICTION is again the most successful (speedups
of up to 1.33 and 1.50 for 2 and 3 dimensions respectively).

Figure 5 shows the compression of read-runs forSPARSE (again on
128 nodes with a 2-dimensional network).COMBINING does not per-
form very well forSPARSE and this is also evident in its failure to
affect the large read-runs.AGENT DETECTION spreads the largest read-
runs all over the read-run spectrum with a center around 60. This
means that the number of requests that slip through the agents before
they detect widely shared data has significant variance. StaticGLOW
andPC PREDICTION perform very well, most of the time allowing the
directories to see only 9 requests (8GLOW agents and the local node).

2 DIMENSIONS 3 DIMENSIONS

N. GAUSS SPARSE APSP TC BARNES GAUSS SPARSE APSP TC BARNES

16 16.6 5.9 11.7 14.4 7.2 16.8 6.09 11.8 14.5 7.2

32 25.3 8.6 19.4 20.1 8.5 26.3 10.01 19.9 20.6 8.5

64 22.9 12.7 21.0 19.3 12.6 25.3 15.73 21.9 20.1 12.6

128 12.9 12.5 14.7 13.2 — 16.2 18.54 15.9 14.3 —

Table 1: Actual speedups (over a single node) of the base cases,
i.e. SCI with its linear sharing lists.

FIGURE 2. Normalized speedup (overSCI) for GAUSS in 2 and 3
dimensions (16 to 128 nodes).

FIGURE 3. Read-run compression forGAUSS (128 nodes 2-
dimensions). Y-axis (number of accesses) in logarithmic scale.
Accesses corresponding to large read-runs are shifted toward
smaller read-runs usingGLOW  extensions.

FIGURE 4. Normalized speedup (overSCI) for SPARSE in 2 and 3
dimensions (16 to 128 nodes).
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APSP andTC exhibit similar behavior (we present graphically only
the APSP speedups in Figure 6). WithSCI, APSP does not scale
beyond 64 nodes andTC does not scale beyond 32 nodes. ForAPSP,
staticGLOW is up to 2.20 times faster thanSCI in 2 dimensions and
up to 2.59 times faster in 3 dimensions. Similarly, forTC static
GLOW is up to 2.22 and up to 2.64 times faster thanSCI for 2 and 3
dimensions respectively. For both programsCOMBINING and
DIRECTORY DETECTION fail to show any performance improvement
while AGENT DETECTION performs closely to the staticGLOW. PC
PREDICTION performs almost as well as staticGLOW.

Since APSP and TC exhibit similar behavior we only demonstrate
read-run compression forAPSP (Figure 7). A significant percentage
of the reads of the program correspond to large read-runs. As
expectedCOMBINING is not successful in hiding accesses from the
directories. Although it shifts accesses to smaller read-runs, it is not
enough to make a difference in performance.AGENT DETECTION is
quite successful compressing the read-runs to a size of around 30
(this translates to about 22 requests slipping trough 8GLOW agents
while the rest are intercepted). StaticGLOW works very well leaving
only read-runs of size 9 (similarly to the previous two programs). A
common characteristic of theAPSP andTC programs is that their data
blocks are widely shared only once. Not surprisinglyDIRECTORY
DETECTION fails to change the read-runs of the program. The read-
run histogram forPC PREDICTION is almost a carbon copy of the
staticGLOW and this explains their almost identical performance.

BARNES is not affected much by the dimensionality of the network
and does not speedup considerably with higher numbers of proces-
sors (Table 1). This is due to the very small dataset we were able to
simulate with our tools (4K particles). With larger datasetsBARNES
should exhibit better scaling. Nevertheless, the schemes we pro-
pose show speedups overSCI (Figure 8) —as much as 1.3 for 32
nodes.COMBINING andAGENT DETECTION as well as staticGLOW
do not show significant speedups overSCI. However,DIRECTORY
DETECTION andPC-PREDICTION work very well, the former recog-

nizing the top of the tree as widely shared and the latter identifying
the instructions that access the top of the tree. The best speedups
are 1.27 forDIRECTORY DETECTION and 1.3 forPC PREDICTIONfor
32 nodes. Read-run analysis shows that all schemes exhibit differ-
ent behavior forBARNES than for the other benchmarks (Figure 9).
All schemes redistribute both large and small read-runs among the
smaller read-runs but without any particular peaks and in various
degrees of success.DIRECTORY DETECTION andPC PREDICTION do
the best job in reducing the large read-runs.

To summarize the results:AGENT DETECTION consistently tracks the
performance of the staticGLOW while COMBINING only works for
one program (GAUSS). The results show thatCOMBINING is indeed
sensitive to the congestion characteristics of the application. The
behavior ofCOMBINING also changes depending on the network

FIGURE 5. Compression of read-runs forSPARSE (128 nodes, 2
dimensions). Y-axis (number of accesses) in logarithmic scale.

FIGURE 6. Normalized speedup (overSCI) for APSP for 2 and 3
dimensions (16 to 128 nodes).
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FIGURE 7. Read-run compression for APSP (128 nodes, 2
dimensions). Y-axis (number of accesses) in logarithmic scale.

FIGURE 8. Normalized speedup (overSCI) for BARNES for 2 and
3 dimensions (16 to 128 nodes).

FIGURE 9. Read-run compression forBARNES (64 nodes, 2
dimensions). Y-axis (no. of accesses)not in logarithmic scale.
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characteristics (e.g., link and switch latency, bandwidth) while the
behavior of theAGENT DETECTION with regard to the number of
intercepted requests remains largely unaffected.DIRECTORY DETEC-
TION gives mixed results working only for three of the five pro-
grams.PC PREDICTION proved to be not only the most successful
dynamic scheme but also better than the static in many cases.

8    Conclusions
In this paper we have shown that the number of accesses to widely
shared data can be large even if the amount of widely shared data
is small. The time spent in accessing such shared data can be con-
siderable, hence there is considerable benefit in providing transpar-
ent hardware support for widely shared data. This benefit increases
with system size since large systems suffer the most from widely
shared data.

For economic reasons, hardware support for specific sharing patterns
must be transparent and non-intrusive to the commodity parts of the
system. TheGLOW extensions to cache coherence protocols are
designed with transparency in mind: they are implemented in the
network domain, outside commodity workstation boxes, and they are
transparent to the underlying coherence protocol. TheGLOW exten-
sions work on top of another cache coherence protocol by building
sharing trees mapped well on top of the network topology thus pro-
viding scalable reads and writes. However, in their static form they
require the user to define the widely shared data and issue special
requests that can be intercepted byGLOW agents. This is undesirable
for various reasons including implementation difficulties that inhibit
transparency. In this paper we propose and study three schemes that
can detect widely shared data at run-time and we compare them
againstSCI, staticGLOW and combining. Each scheme exhibits dif-
ferent performance and cost characteristics, hence it is valuable to try
to explain why they perform as they do. To this end we examined
each scheme’s effects on the read-runs of five programs.

The first scheme,AGENT DETECTION, discovers widely shared data
more reliably than read-combining by expanding the window of the
observable requests. Switch nodes remember recent requests even if
these have long left the switch. Requests whose addresses have been
seen in the window are intercepted (as requests for widely shared
data) and passed to theGLOW extensions for further processing. The
interesting characteristic of this scheme is that in large systems even a
small window performs very well. This scheme achieves a significant
percentage of the performance improvement of the staticGLOW and
has the potential to outperform the static version in programs where it
is difficult for the user to define the widely shared data. Since it
requires modification only in the switch nodes we believe it is the
least intrusive of all the schemes. As for congestion-based combining
(COMBINING) which is slightly simpler we have found that it is highly
dependent on the congestion characteristics of the applications.

In the second scheme,DIRECTORY DETECTION, the directories are
modified to discover the widely shared data by counting reads
between writes. When a directory finds a data block to be widely
shared it notifies the nodes in the system to subsequently request
this data block as widely shared data. The applicability of this
scheme is limited: it works well when data blocks are widely
accessed more than once.

The third scheme,PC PREDICTION, is the most successful and it is
based on predicting which load instructions are going to access
widely shared data. Although its implementation is intrusive to the
processor itself it offers the best performance. The potential for
further optimizations based onPC PREDICTION could increase its
value. Finally, in this paper we used read-run analysis to gain
insight on how these schemes affect accesses to widely shared
data. This tool enabled us to visualize these effects and reason
about the behavior of the various schemes.
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