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Abstract—In this paper we argue that widely shared data are a more that simultaneous requests can be merged. The probability of
serious problem than previously recognized, and that furthermore, it isoccurrence of simultaneous requests only becomes a factor when
possible to provide transparent support that actually gives an advan-Serious network contention extends the latency of individual
tage to accesses to widely shared data by exploiting their redundanc%%‘?:i*eevsési's 2”% (;Sctgilgr??rqallétéuiyboisz;ctcheasts (égn\/qv?(ljr(]ell?/gsﬁ:rr(]e dh(cj)gt% %g
to improve accessibility. Tez owextensions to cache coherence pro- ) .

tocolg —previously g/roposed— provide such support for V\F/Jidely the latency that would be experienced in an unloaded network.
shared data by defining functionality in the network domain. However, However, it is possible to access widely shared data even faster than
in their static form thesLow extensions relied on the user to identify non-widely shared data. The presence of redundant copies of a
and expose widely shared data to the hardware. This approach suffer§latum in multiple caches throughout the system offers this possibil-
because: i) it requires modification of the programs, i) it is not always - This situation has some resemblance to cache-only machines

. 1 . . . .. 2~ [12], where data is quickly accessed if it resides in a cache close to
possible to statically identify the widely shared data, and iii) it is ghe] requester. If soqme d)gta that is needed by a node are widely

incompatible with commodity hardware. To address these issues, Wenared, it is likely that a cached copy of the data is closer than the
study three dynamic schemes to discover widely shared data at runpriginal data in the home node. If an architecture can exploit this fact
time. The first scheme is inspired by read-combining and is based ono improve accessibility of widely shared data, programmers would
observing requests in the network switches —etlmwv agents. The find that the best algorithms make extensive use of widely shared
agents intercept requests whose addresses have been observeé@ta rather than eschewing. Thus the potential for systems that pro-
recently. This scheme tracks closely the performance of the staticVide high-quality support for widely shared data may be much larger
GLow while it always outperforms ordinary congestion-based read- than would be indicated by a sample of current shared-memory pro-
combining. In the second scheme, the memory directory discoverd"@ms which generally avoid such data wherever possible.

widely shared data by counting the number of reads between writesSeveral classes of sharing patterns in shared-memory applications
Information about the widely shared nature of data is distributed to have been identified (migratory, read-only, frequently-written sharing,
the nodes which subsequently use special wide sharing requests ttc.)[25]. Hardware protocols (e.g, pairwise sharing and QOLB [9] in
access them. Simulations confirm that this scheme works well wheﬁc' [1]) or software protocols, or application specific protocols have

: : : . . been devised to deal with such patterns effectively. Widely shared
g}? derggg ssf?arrﬁf(ijcgﬁtursed?;rt:g (illsat?);ssg)derzlrs]tenrteg}/ctiirntlm\tlav.h'ilz;]e Itgggdata that are read simultaneously by many —usually all— processors
: : 9 . . P 9 is a distinct sharing pattern that imposes increasingly significant over-
instructions are going to access widely shared data. Although thepeaq as systems increase in size [15]; when all processors read widely
implementation of this scheme is not as straightforward in a commod-shared data there is much contention in the home node for servicing

ity-parts environment, it outperforms all others. the requests as well as in the network around the home node which
. becomes a hot spot [22]; similarly, when the widely shared data are
1 Introduction written there is a large number of invalidations (or updates) to be sent

. : S i all over the system (i.e., non-locally). For many systems with no pro-
Shared-memory multiprocessing is only attractive if it can support 8yision for efficient broadcast or multicasts these invalidations con-

programming paradigm and programming languages efficiently. - h
Numerous studies have characterized the sharing patterns of prosUme much network bandwidth, perhaps in a wasteful manner.

grams that have been written for such multiprocessors [25], and it isPreviously, scalable coherence protocols have been proposed
generally believed that widely shared data occur infrequently and do[13,20,21] but they were applied indiscriminately on all data. This
not significantly affect performance. diminishes the potential benefit since the overhead of the more
In this paper we argue that in fact widely shared data inherent incomplex protocols is incurred for all accesses. A tree-directory

: ; ..cache coherence protocol scales better than those based on central-
some parallel algorithms are a more serious problem than previ ized or linear list directories, but building a sharing tree does not

ously recognized, and that furthermore, it is possible to provide . ;
support that actually gives an advantage to widely shared data. Th¢OMe for free and doing so for data that are not widely shared may
idea of read-combining [11] evolved because of the concern for esult in performance degradation for the most common access
network contention for widely shared data. Read-combining is PAtterns. Only when the number of nodes that participate in the
highly dynamic, and reduces traffic in the network by recognizing S"aring tree is large, the overhead is sufficiently leveraged.
Bianchini and LeBlanc distinguished widely shared data (“hot” data)
from other data in their work [5]. Similarly, tiee.ow extensions for
cache coherence protocols [15,16] are intended to be used exclusively
for widely shared data. The distinguishing characteristic afttsy
extensions is that they create sharing trees very well mapped on top of
the network topology of the system, thus exploiting “geographical
locality” [16]. Bennett et al also distinguished widely shared data in
their work with proxies [4]. However, in all the aforementioned work
widely shared data were statically identified by the user (the program-
mer or, potentially, the compiler). Such static methods of identifying
International Conference on Supercomputing 1998 widely shared data have three major drawbacks: i) user involvement
© ACM complicates the clean shared-memory paradigm, ii) it may not always



be possible to identify the widely shared data statically, and mostfor a data block as a sequence of reads (from any processor)
importantly iii) mechanisms are required to transfer information from between two writes (from any processor). The size of a read-run is
the user to the hardware; these mechanisms are hard to implemenius directly related to the number of simultaneous cache copies in
when the parallel system is built with commodity parts. This last con- the system (if we ignore for a moment multiple reads because of
sideration is crucial since vendors must leverage existing commodityreplacements). In Figure 1 we show the sharing behavior of the
parts (e.g., processors, main-boards, and networks) in order to drive&sAussprogram running on 128 nodes (discussed further in Section
development costs down and shorten the time-to-market. 6). The left graph in Figure 1 is the read-run histogransfass
he horizontal axis is the read-run size and the vertical axis is the
mber of times a read-run appears in the execution of the pro-
ram. Despite the fact that the number of read-runs of size 128
corresponding to widely shared data) is negligible, and despite the
modest degree of sharing of 2.75, about one half of all the reads (or

Because of these reasons, in this paper we discuss how well we ¢
dynamically identify and handle widely shared data. We propose
and study three dynamic schemes to detect widely shared data. F
reference we include in our comparisons congestion-based read
combining. The three novel schemes differ in where and how thealternatively invalidates) in the program correspond to widely

detection takes place: shared data. The abundance of reads (invalidates) corresponding to
AGENT DETECTION : In this scheme (also discussed in [17]) the Wwidely shared data is evident in the right graph of Figure 1 which
request stream is observed in the network, at the exact places wherghows the number of accesses (reads or invalidates) that corre-
theGcLow extensions are implemented (namelgiabw agents that ~ spond to read-runs of various sizes (horizontal axis). The explana-
are switch nodes in the network topology). Changes are requiredtion for this is that each read-run of sk&eimpliesW reads oW

only in thegLow-specific hardware without affecting other parts of invalidates and even the very few but large read-runs encompass as
the system making it the most transparent of the three dynamicmany reads and invalidates as a great number of small read-runs.

schemes. Requests for widely shared data can be identified in the nymber of read-runs Number of Accesses

request stream if their addresses are seen often enougbLdilve 300000 300000

extensions are then invoked for such requests as in thectatic 250000 WRITERONST == 250000 READSINVALIDATES'
This technique is similar in spirit to combining [11], but can better 200000 200000

exploit requests scattered in time because the critical information  1so000 idely shared data 150000

hangs around in the combining node after a request is gone. 100000 \%00 drmallto Seeg 100000

DIRECTORY DETECTION : In this scheme the directory is responsi- 50000 50000

ble for identifying widely shared data. This scheme resembles the ®0 20 40 0 80 100 120 ®0 20 40 o 80 100 120
limited pointer directories such as [Bir[2]. These directories Size of r&%‘é}g’“: dearee of Sharisr:Z? §f705<)>freSpondlng read-run
switch from point-to-point messaging to broadcasting if the num- ge deg g < .

ber or readers exceeds a threshold. Similarly in our scheme, thd”lGURE 1. read-run histogram and corresponding accesses
directory detects widely shared data (by keeping track of the num-(Reads/Invalidations) forAuss running in 128 nodes.

ber of readers) but —instead of broadcasting— it informs the nodesyot only the accesses to widely shared data are numerous but they
in the system about the nature of the data. After the nodes learn thagre 410 the most expensive in terms of latency because they create
an address is widely shared they usedif@w extensions to access  contention in the network and even worse contention in the home
it. This DIRECTORY DETECTIONScheme depends on widely shared node directories of the dataVhen many nodes simultaneously
data remaining as such through multiple read-write cycles. access a single data block, eagpegiences much greater latency
INSTRUCTION -BASED (PC) PREDICTION : The last scheme is a novel  than if all nodes accessed different data blocks in different home
method based on predicting which load instructions are likely to hode directories. Thus providing support for such accesses is
access widely shared data according to their past history. Instrucessential for scalability.

tion-based (PC) prediction is well established in uniprocessors but: ;

it has only been used for prefetching in multiprocessors [6]. This 3 GLOw extensions
scheme does have implementation difficulties for commodity pro- ThecLow extensions provide support for widely shared data. They
cessors but on the other hand it is the most successful scheme Wgre independent of how the widely shared data are exposed to the

have studied. hardware. For purposes of discussing the extensions we assume
The rest of this paper is organized as follows: In Section 2 we furtherthat special requests are used to access widely shared data. In sub-
motivate the importance of widely shared data and introckam: sequent sections we describe how to generate such special requests

run analysis. For the benefit of the reader unfamiliar with Goow either statically or dynamicallgLow extensions improve on pre-
handle widely shared data, we give a very brief description in SectionY/0us efforts (EC [5], STP [21], STEM [13]) by embodying the

3. In Section 4 we expand on the problems associated with the statiéollowing four characteristics:

methods of identifying widely shared data. We introduce the protocol-transparency. The GLOW extensions are not a protocol
dynamic methods in Section 5. In Section 6 and Section 7 we presenthemselves but rather a method of converting other protocols to han-

our evaluations and results. Finally, we conclude in Section 8. dle widely shared data. The functionality of theow extensions is
) Implications of Widely shared data implemented in selected network switch nodes cadlenlv agents

that intercept special requests for widely shared data. These nodes

When widely shared data exist they are usually a very small percentbehave both as memory and cache nodes using the underlying cache
age of the dataset of a program. Studies have also shown that theoherence protocol recursively: toward a local cluster of nodes they
average degree of sharing (the number of nodes that simultaneousl§ervice GLOw agents impersonate remote memory nodes; toward the
share the same data) in application programs is low [25]. Thesehome node directory, agents behave as if they were ordinary caches.

observations however, do not indicate the serious performance degGeographicaI Locality: A sharing tree out of theLow agents and
radation resulting fromccessingsuch data. Even if widely shared  qther caches in the system is constructed to match the tree that
data are a negligible percentage of the dataset they can be detrimeRans.in from all the sharing nodes to the actual home node of the
tal to performance because the numbeeadis(or invalidateg cor- widely shared datasLow captures geographical locality so that
responding to such data can be excessively large: widely shared daigeighhoring nodes in the sharing tree are in physical proximity.

imply that a great many processors read them simultaneously. ] ] ]

. . Scalable reads Since thesLow agents intercept multiple requests
To make this point clear we use the concepeatl-runsas a tool for a cache block and generate only a new request toward the home
to investigate sharing behavior (in Section 7 we are making exten-ngge a combining effect is achieved, eliminating hot spots [22].
sive use of read-run analysis to explain the performance of the var- ) ) ] )
ious schemes). Analogous tavate-run [8], we define a read-run  Scalable writes Upon a writeLow invokes in parallel the under-



lying protocol’s invalidation or update mechanisms: on receipt of ane  EXTERNAL REGISTERS A two-instruction sequence is

invalidation (update) message, an agent starts recursively the invali-  employed. First a special store to an uncached, memory
dation (update) process on the other agents or nodes it services. The mapped, external register is issued, followed by the actual
parallel invalidation (update), coupled with the geographical locality load or store. This special store sets up external hardware that
of the tree permits fast, scalable writes that require low bandwidth. will tag the following memory operation as a widely shared
3.1 GLOW extensions tcscCl data operation. The main drawback of this scheme is that it

. . ) requires external hardware close to the processor.

The first implementation afLow [16] is done on top of Scalable . prereTCH INSTRUCTIONSIf the microprocessor has prefetch
Coherent InterfacesCi) [1] —unlike most other directory-based instructions they can be used to indicate to the external hard-
protocols (SSE’CCIh d‘?“f%“ t[18]t)htheg_keg[p aII_tr;e dll‘(?[_CtOl’%/ "Hlormﬁ‘t'o.“ ware which addresses are widely shared. Again, external
in memory, istributes the directory information to the sharing ; ;

nodes in a doubly-linked sharing list. The sharing list is stored with hardware is required close to the processor.
the cache lines throughout the system. A version of this implemen-The static approaches are plagued with a number of problems—also
tation (described in [15]) defines the functionality of network mentioned in the introduction—including the implementation prob-
switch nodes and it is fully compatible with curreot systems. lems of the hardware interfaces described herein. Thus in the next

scl has two characteristics that make it an ideal matcttiow. The section we present dynamic approaches to alleviate these problems.

first is that its invalidation algorithm is serial and a tree protocol is § Dynamic approaches for wide sharing
especially attractive for speeding up writes to widely shared data. The

second concernsci topologiessci defines a ring interconnect as a  Without the a priori knowledge of the addresses or the instructions

basic building block for larger topologiesLow extensions can be  that access widely shared data, this information needs to be discov-

implemented on top of a wide range of topologies constructediof ~ ered at run-time. In this section we describe three schemes to

rings, including hypercubes, meshes, trees, butterfly topologies, and@ccomplish this. The first scheme relies exclusively orctiuev

many otherscLow can also be used in irregular topologies (e.g., an agents for the detection, the second scheme relies on the memory

irregular network of workstations). In this paper, we stadgw on directories and the third relies on detecting instructions that access

highly scalable k-ary n-cube topologies [10] constructed of rings. As widely shared data.

we mentioned in the general descriptionGalbw protocol process- :

ing takes place in strategically selected switch nodes qtimsv 5.1 Agent detection

agents) that connect two or m@@i rings in the network topology. Conceptually acLow agent could intercept every request that

passes through and do a lookup in its directory cache. This would

result in slowing down the switch node, polluting the directory

caches with non-widely shared data, and incurring the overhead of

building a sharing tree for non-widely shared data. Instead, we

want to filter the request stream and intercept only the requests that

gre likely to refer to widely shared data. The dynamic scheme
escribed here is intended to perform such filtering.

GLOW agents cache directory information; caching the actual data
is optional. Multilevel inclusion [3] is not enforced to avoid proto-
col deadlocks in arbitrary topologies. This allows great flexibility
since the involvement of th&.ow agents is not necessary for cor-
rectness: it is at the discretion of the agent whether it will intercept
a request or not. Details on how the sharing trees are created an
invalidated are described in [15] and in [16].

. . . Agents observe the request traffic and detect addresses that are
4 Static approaCheS for wide Sha”ng repeatedly requested. Requests for such addresses are then inter-

In the previous section we described ¢hew extensions to handle cepted in the same way as the special requests in the static methods.

requests for widely shared data. Thew mechanisms are indepen- N @n implementation of this scheme each agent, besides its ordi-
dent of how the widely shared data are distinguished from other dataa"y. melssage queutfasr,] k‘:fggts a gmall queue (hp035|tl:)JIy mp:jler_pﬁnted
Here, we describe the static methods to define the widely shared dat3S circular queue) of the laistread requests it has observed. The
(also discussed in [16]). Identifying the widely shared data in the dUeue contains the target addresses of the requests, hence its name:
source program is only the first step. The appropriate information€c€nt-addresses queuesing this queue each agent maintains a
must then be passed fo the hardware so special requests for Wide@'d'”g window of the request stream it channels through its ports.
shared data can be generated and invokettbe agents. We divide  When a new request arrives at the agent, its address is compared to
the static methods depending on whether the programmer identifieshose previously stored in the recent-addresses queue. If the address
the data that are widely shared or tiestructionsthat access such s found in the queue the request is immediately intercepted by the
data. The following two subsections describe the two alternatives.  agent as a request for widely shared data. Otherwise, the request is

Identifying addresses This is the simplest method to implement forwarded to its destination. In both cases its address is inserted in
and we have used it for the evaluations in later sections. A possibldN€ quéue. This method results in some lost opportunities: for exam-
implementation of this method uses address tables, structures that/€ We do not intercept the first request to an address that is later
store arbitrary addresses (or segments) of widely shared data. ThEPeated in other requests. Also, if a stream of requests for the same
address tables can be implemented in the network interface or aﬁjdress is diluted sufficiently by other intervening requests we fail
part of the cache coherence hardware. In both cases the user mut}, 'écognize it as a stream of widely shared data requests. This
have access to these tables in order to define and “un-define’5cheme might also be confused by a single node repeatedly making
widely shared data. Implementing such structures, however, is nolfhe same request frequently enough to appear more than once within
trivial because of problems relating to security, allocation to multi- (€ @gent's observation window (this could happen in producer-con-

ple competing process, and address translation. The address tablS&Mer or pairwise sharing). A safeguard to protect against this is to
could be virtualized by the operating system, but this solution is 2Vid matching requests from the same node against each other.

also unsatisfactory since (i) it requires operating system supportin the absence of congestion (i.e., when the agent’s message
and (ii) it will slow down access to these tables. queues are empty) we need to search the recent-addresses queue in
Identifying instructions : If specific code is used to access widely sllghttlyslgss t{hme than tlt tc.iages for a message to Fflasts thtrouglh thte g
shared data, the programmer can annotate the source code and tﬁ??hn . |ncte ffhfecef.‘t 'ﬁ ” ress%s queueﬁsdafsr_nla fS rtucol#re ocate
compiler can generate memory operations for this code that arefit tN€ heart of the switch it can be searched Tairly Tast. OT course,

interpreted as widely shared data requests. We have proposed tH€ minimum latency through the switch will dictate the maximum
following implementations: size of the queue. For the switches we model in our simulations we

«  COLORED OR FLAVORED LOADS The processor is capable of expect that a size of up to 128 entries to be feasible. We have
tagging load and store operations explicitly. Currently this shown that this scheme is remarkably insensitive to the size of the

method enjoys little support from commercial processors. recent-addresses queue and even queues as small as four to eight



entries are quite able to distinguish widely shared data [17]. very few read requests between writes after the first read-write
cle. However, it cannot determine whether it sees very few
guests because the data block is not widely shared anymore or
ecause theLow extensions absorb most of the requests in the net-
ork. Even if the directory recognized a transition to a non-widely

When the agents observe the reference stream only when there i
congestion (in other words when multiple requests are queued i
the agent’s message queues) our method for detection of widel
shared data defaults to read-combining as was proposed for th ; : ; ;
NYU Ultracomputer [11]. In this case, the observable requests are%hared state, it would have o notify again the nodes in the system

only the ones delayed in the message queues. The problem witr?bolm thistch%ng?.fFortunggelly, tﬂe “hdotttag” con.(cjerl)t pLovidgsl?t?]at-
L : : ) . rural way to adapt from widely shared to non-widely shared. e
such combining (that our method effectively solves) is that it is 54 blgck is no?widely acce)ésed the “hot tags” argund the system

based too much on luck: requests combine only if they happen t%ill be re : :
> - : 4 ; placed —they are invalid tags after all— and the nodes
?heeIgrtgge?]%rg%fqgoe#;egii(t)hne Z%Tq%fr'm]% \;\éh;ﬁghrl?/l%hetphe%%pe?]rt] 82|¥h'ep ill lose the information that the block was widely shared.The only
1 - 30 athological case that can result from the inability of this scheme to
tr_letworr]k t'mt'”g ?_”d q?etﬁ'ng Chlf?lragterls[tll%s a|15 \%ell gs t?e Cc;”ges'adapt q%ickly from widely shared to non-widely s);lared is when the
lon charactenstics of the appiication |../]. In € SECUon 7 We qyara phiock becomes migratory after it was widely shared. In this
show that we can effectively discover widely shared data using acase ‘many subsequentgread)s/ will incur the ovgrhead of widely
sliding window whereas combining fails in most cases. shared data because it will take many read-write cycles to erase the
5.2 Directory detection information about the nature of the data block from all the nodes.

. . . . . As of yet, we have not encountered this situation in any benchmark.
In this scheme the memory directory is responsible to discover y Y

widely shared data. In contrast to the previous scheme that is transd.3  Instruction-based prediction
parent to the rest of the system this scheme requires some modifip, g4\ ction-based predictiore PREDICTION in various forms has

cations to the coherence protocols. This is feasible in many ; ;
commercial or research systems where the cache coherence prot F}S T:opnr%?:t)istegorisesaartn: ?gﬁmzm;ﬁ C%%?%gggtﬁsgﬁ{ 'g;an%gg%?fél In
cols are implemented as a combination of software and hardware,,.anqjated in the rocessc))/r die and all the pertinent informatio%
and they can be upgraded (e.g., STING [19]). ; P P - : pertinen

is local. In parallel programs instruction-based prediction has been
The directory is a single point in the system that can observe theproposed for prefetching [6]. In this paper we propose instruction-
request stream for its data blocks. It is therefore in a position to dis-based prediction as a mechanism to accelerate parallel programs
tinguish widely shared data. In directories such asgXOg] the with wide sharing. Specifically, we propose a mechanism to pre-
number of readers is readily available. Howeversénwhere the dict which load instructions are likely to access widely shared data.

directory keeps a single pointer to the head of the sharing list, ther, e qiction is based on previous history: if a load accessed

directory must count the number of reads between writes. Acounterwide|y shared data in the past then it is likely to access widely

associated with each data block, counts up for each read and it ISh ; ; :
. . At - ared data in the future. This behavior can be traced to the way
reset with a write. Data blocks for which the corresponding counterpara"e| programs are structured. For example in Gaussian elimina-

reaches some threshold are deemed widely shared: this is a ; ; o : : =

e St ! (e tion the pivot row is widely shared and it accessed in a specific part
heuristic since the directory might incorrecily deem a data block 8Sof the prpogram. Therefor)(/e, once the load instruction thz?t accegses
widely shared just by seeing multiple reads from the same nodeq hivot row has been identified it can be counted on to continue

gc?\%i\{gr’egninsilr?céhlif c%isfetc[:ie Igvog\iﬁr&gn}cgfﬁvﬁa%%%}etn?situa!o access widely shared data. We have found that this prediction is
g fy ap g P very strong for all our benchmarks.

tion by providing caching in the network. Determining whether read
requests actually come from different nodes is possible if we keep aVhether a load accessed widely shared data is judged by its miss
bitmap of the readers (similarly to P{). However, this would be an  latency: very large miss latency is interpreted as an access to
expensive addition to treei directory and we do not examine it fur-  widely shared data. Using latency as the feed-back information is
ther. In our evaluations we extended 8@ directory tag with a not as farfetched as it sounds: we have observed that the access
small 2-bit saturating counter. latency of widely shared data (withoatow support) is signifi-
The first time a data block is widely accessed all the read requestgz?ély-llﬁirg?; ?:gahhs%%\?egi?\ﬁo?ﬁcggﬁtéﬁggﬁyaggnrggsvtwi?r?l)(/)ftgﬁgf d
reach the directory without any intervention from ¢hew agents. : PR ; ; P y
If the directory finds that the data are widely shared it notifies the because of contention in the home node directory which becomes a
ry y +hot spot.” For example, the latency of 128 requests going to the

nodes in ithler systertn fr? Ehe R%Xt itgp? thety gcceg‘séthe trJ1Itocl_<|_ﬂ?ey Wilkame node is much higher that the latency of 128 requests going to
use special requests that can be intercepted lLow agents. This 55" jfferent nodes. Microbenchmark results previously reported
information is transferred to the nodes when the data block is wrltten.[15] confirm this observation. Although the latency criterion does

Upon a write the directory (or the writer §Ti) sends invalidation ; ;
: . . : ot guarantee that we will apptow only to widely shared data
messages that notify the previously reading nodes that this data fro@r tg all widely shared dataF,) it'is a valﬁable crit)t/arion because it

now on is considered widely shared. Only the nodes that participate ppliescLow to accesses that are detrimental to performance. The

in the first read will learn this. The information is stored in each node ; ; ;
. o2 . - p ,, latency threshold for widely shared data is a tuning parameter that
in the invalidated caches with a tag value which we call “hot tag.” If a can be set independently for different applications.

node tries to access a “hot tag” it will send a request for widely
shared data which will be handled by th®w agents. Alternatively, We have chosen to study a simple predictor. The first time a load
the information about which data blocks have been found to bemisses and its latency is longer than a threshold (that represents the
widely shared can be kept in address tables similar to those describeaverage latency of the shared-memory system) its PC is inserted in
for the statiacsLow. However, address tables would make the whole a small 16-entry fully associative cache with LRU replacement. In
scheme more difficult to implement and are not examined further.  subsequent misses we probe this small cache using the PC of the

This scheme is based on the premise that data blocks are widel%%%b/lgﬁ;‘zed %;;.h't In the cache we issue a special request for

shared for many read-write cycles. Since the opportunity to opti-

mize the first read-write cycle is lost, this scheme does not provideContrary to the uniprocessor/serial-program context where predictors
any performance improvement when data blocks are widely sharedare updated and probed continuouslyoméy update the prediction
only once. Furthermore, it may degrade performance by incorrectlyhistory and probe the predictor in the case of a miss. This makes the
treating such data blocks as widely shared when they are not. A furprediction mechanism much less frequently accessed. Furthermore,
ther consideration about this scheme is that it is easier to adapt fronits latency is not in the critical path since we only need its prediction
non-widely shared to widely shared than the other way around. If aon misses which are of significant latency anyway. Thus, it is not a
data block is widely accessed only once, the directory will observe potential bottleneck nor does it add any cycles to the critical path.



There are two choices for the location of such a mechanism: eithefTransitive Closure, anBarRNES. Although these programs are not
inside the processor or outside. When the mechanism is inside thén any way representative of a real workload, they serve to show
processor it is updated/probed when a load misses in the internathat GLow can offer improved performance. Additionally, these
(L1) cache. When we have a hit in the prediction cache a speciaprograms represent the core of many scientific applications used
request for widely shared data is issued outside the processorfor research in many engineering and scientific disciplines. We did
Since the type of the request only matters when we also have aot consider programs without widely shared data because such
miss in the external (L2) cache, it may lag a cycle behind the exter-programs would hardly activate tkieeow extensions. Theauss

nal (L2) cache access without degrading performance. The mechaprogram solves a linear system of equations (512 by 512 in our
nism operates similarly when it is implemented outside the case) using the well known method of Gaussian elimination.
processor with the assumption that the PC of the correspondingDetails of the shared-memory program can be found in [16]. In
load instruction is available outside the processor on an externakvery iteration of the algorithm a pivot row is chosen and read by
(L2) cache miss. The resulting request could be delayed one cyclall processors while elements of previous pivot rows are updated.
until a prediction is obtained. However, this cycle can be hidden by For the static method, we define a pivot row as widely shared data
cache coherence protocol or network access latencies. In our studjor the duration of the corresponding iteration. Bm@RSE pro-

we do not distinguish between the two implementations since wegram solveAX=B whereA andB are matricesA being a sparse
model a processor with a single cache and a 16-entry predictiormatrix) andX is a vector. The main data structures in $heRSE
cache that does not delay the corresponding requests. program are thé&l by N sparse matriA andX, the vector that is
idely shared N is 512 for our simulations). In the static method

e define vectoX as widely shared data. The All Pair Shortest
ath APsP and the Transitive Closured) programs solve classi-

al graph problems. For both programs we used dynamic-program-

- h . ; . "Hing formulations, that are special cases of the Floyd-Warshall
commercial processor with this feature). Despite this drawback Wealgogrithm [7]. In theapsp, anN \?ertex graph is represen)tled by an

have two arguments why this method is important to consider: (i) it iS \ oy N adjacency matrix. The input graph used for the simulations
highly successful in the context of this work, and (ii) we believe that is ay256 vJertex dyense gr;aph (mopst ogf th% vertices are connected). In

such prediction mechanisms will be increasingly important in opti- %hETC program arN by N matrix represents the connectivity of the

Wherever this mechanism is implemented it necessitates a custo
approach: if it is inside the processor it requires a custom designe;

mizing not only widely shared data but various access patterns suc raph with ones and zeroes. The input is a 256 vertex graph with a

as migratory sharing or producer-consumer sharing — thus the cosgng ; ;
of the prediction hardware will be amortized by many optimizations. ag(f f(c)?zatrr\]ge Sct);tti\évomve?{]tgc&a S{h%elvr\llﬂoﬁgnr?g%e%aﬁﬁ; tl)g tg e[?irr?eg(;a?ss
6 Experimental evaluation widely shared data. Finally thBARNES benchmark from the
SPLASH suite [24] is an example of a program with very little
A detailed study of the methods we propose requires executionwidely shared data that can be identified statically. The main data
driven simulation because of the complex interactions between thestructure inBARNES is anoctree[24] whose top is widely shared.
protocols and the network. The Wisconsin Wind Tunmeht) However, in the static version aL.ow we can only define the root
[23] is a well-established tool for evaluating large-scale parallel of the octree as widely shared.
systems through the use of massive, detailed simulation. It execute§
target parallel programs at hardware speeds (without intervention)/ ~ Results
for the common case when there is a hit in the simulated coherent
cache. In the case of a miss, the simulator takes control and take
the appropriate actions defined by the simulated protocol. The
wwrT keeps track of virtual time in processor cyckd.has previ-
ously been simulated extensively uneent [14] and thecLow stensions. In general our results show W offers areater
extensions have been applied to this simulation environment. ger?orsmoansce a%?/a?wtgggu wi?t?u h?gﬁe(r) dmnsignglﬁyg ﬁ:t\?vorks
Hardware parameters: We simulated systems that resemsbta because it can create shorter trees with larger fan-out.
systems made of readily available components sushiaimgs and %N
C

n this section we present simulation results for the five programs
and for the various system configurations (2-dimensional and 3-
dimensional networks, 16 to 128 nodes). We use the 3 dimensional
topologies to show how network scalability affects thieow

workstation nodes. We have simulated k-ary n-cube systems from 1 gMCB?mregge:r% tﬁﬁggcvcét;\évhscgfnt?]%sg%ét:g%a/ Eﬁ?g f(l:rc;{n\?el?lng
to 128 nodes in two and three dimensions. The nodes comprise g; N _ y ; i
Processor, ascl cache, memory, memory directoryGEow agent, ion employs a 128-entry recent-addresses queue to discover repeti

and a number of ring interfaces. Although we assume uniprocessotgon in the addresses (we refer to this\a&NT DETECTION). In the
nodes,cLow applies equally well to symmetrical multiprocessor econd version the directory discovers the widely shared data and we

> A . refer to this a®IRECTORY DETECTION In the third version we predict
(SMP) nodes. In this case tleow agent resides in the network o efions that access widely shared data (we refer to this scheme as
interface dOftF]he SB"P{_‘ﬁde and is responsntb‘lls%(t)c')vli'emcz the prct)cesl-jc PREDICTION. We use a smal 16-entry cgche and a miss latency
SOrs Inside the node. The Processors run at SYUVIFZ and EXECUte orifashold of 1000 cycles to determine which misses correspond to
instruction per cycle in the case of a hit in their cache. Each ProCeSy idely shared data. ),&s a reference the average latency of a “Fr)mrmal“

sor is serviced by a 64KB 4-way set-associative cache with a cach
line size of 64 bytes. The cache size of 64KB is intentionally sma"%ccess ranges from about 400 to 600 cycles for our benchmarks.

to reflect the size of our benchmarks. Processor, memory and netWWe measure execution time, and for each program we present
work interface (includingsLow agents) communicate through a 166 speedup normalized to a base case. We selected the base case to be
MHz 64-bit bus. Thesci k-ary n-cube network of rings uses a 500 scion the appropriate number of nodes and with the appropriate 2-
MHz clock; 16 bits of data can be transferred every clock cycle or 3-dimensional network. The actual speedups over a single node
through every link. Ring and bus interfaces as well as switches incurfor the base cases are shown in Table 1. Note here that the pro-
a 10 cycle latency for every message. We simulate contentiongrams we are using do not scale beyond 32 or 64 nodesifdihe
throughout the network but messages are never dropped since weLow extensions allow these programs to scale to 128 nodes but
assume infinite queues. Eashow agent is equipped with a 1024- the performance difference between 64 and 128 nodes is small. A
entry directory cache and 64KB of data storage. We stress here thdimitation of our simulation methodology is that we keep the input
the agent’s data storage is optional and can be omitted without sigsize of the programs constant and —because of practical con-
nificantly affectingcLow’s performance [16]. To minimize conflicts  straints— relatively small. With larger datasets these programs
the agent’s directory it is organized as a 4-way set-associative cachescale to more nodes for the base case and theLow extensions

Benchmarks: To evaluate the performance @fow we used five yield performance improvements for even larger numbers of nodes.

benchmark programssauss SPARSE All Pairs Shortest Path,  Figure 2 shows the normalized speedups foG#hess program. The



two graphs present results for the 2- and 3-dimensional networks.
GAUss onscl does not scale beyond 32 nodes, showing serious per- o
formance degradation with higher numbers of nodes. it

GAUSS

3.0

d

. i . . (]
extensions, however, scale to 64 nodes in 2 dimensions and to 128g
nodes in 3 dimensions (although the additional speedup is negligible).» 2 g -
el
(9]
2 DIMENSIONS 3 DIMENSIONS N
g 105-- -
N. GAUSS| SPARSH APSP TC BARNES GAUSS SPARBE ARSP TC BARNES 6
16 | 16.6| 59 | 11.7 14k 72| 168 60b 118 k5 7R Z 40 e e L L
32| 253] 86| 194 200 85| 263 1001 199 206 85 O COMBINING =™ Static GLOW B PG PREDICTION
64 | 229 12,7 21.0 198 124 258 1573 21.9 20.1 126 B AGENT DETECTION = DIR. DETECTION
128 12.9] 125] 147 132 —| 162 1834 159 143 — FIGURE 2. Normalized speedup (ovescl) for GAussin 2 and 3
Table 1: Actual speedups (over a single node) of the base cases, dimensions (16 to 128 nodes).
i.e.scl with its linear sharing lists. "% s 1 7" COMBINING
StaticGLOW is up to 2.22 times faster thaoiin 2 dimensions and ™"
up to 2.44 times faster in 3 dimensioo®MBINING reaches about =
halfway the performance improvement of staicow while ..
AGENT DETECTIONremains within 5% of the performance of static
GLOW. TheDIRECTORY DETECTIONscheme also works well staying o B e @ o e ECR— w0
within 10% of the statiGLow. UsingPC PREDICTIONresults inthe AGENT DETECTION 1 STATIC GLOW
largest speedups over SCI (up to 2.27 times in 2 dimensions and up - -—
to 2.82 times in 3 dimensions). ey e
To explain the behavior of the variogsow schemes we examine ™ “’N “
how they appear to change the read-runs of the program from the .l S R U N
directories’ point of view. Specifically, for each scheme we plot the DIR. DETECTION PC PREDICTION
reads that correspond to read-runs of different sizes.ctbey ~ =~f 4 e
schemes “compress” these accesses toward the small read-run,| <— fi | . -
sizes. Each scheme’s “compression” relates to its performance
improvement. Ll H

Figure 3 plots the number of reads that correspond to read-runs_ ° = = = ® w0 w0 e orre =
ranging in size from 1 to 128. The horizontal axis is the size of the FIGURE 3. Read-run compression forGAuss (128 nodes 2-
read-run, the vertical axis is the number of accesses (reads/invalidimensions). Y-axis (number of accesses) in logarithmic scale.
dates). The data are famruss on 128 nodes on a 2-dimensional Accesses corresponding to large read-runs are shifted toward
network. These data represent what $oe directories observe. ~ smaller read-runs usingGLow extensions.

Thesci directories count the same node multiple times in the same
read-run if —because of replacements— it sent multiple requests, &
so the correspondence of the read-run size and the degree of sharg
ing is not exact. Because these graphs contain very large and very3
small numbers we selectively use a logarithmic scale in the vertical ¢
axis. This tends to emphasize smaller numbers that would other- @
wise be invisible (as in Figures 1 and 9). :

SPARSE

1Z

mal

The sci graph shows a large number of accesses corresponding tos
large read-runsCOMBINING, AGENT DETECTION static GLOW, 2
DIRECTORY DETECTIONandPC PREDICTIONall absorb a large num- -t 1 .

ber of requests in the network and as a result the directories se& COMBINING Static GLow PC PREDICTION

fewer requests between writes. Staticow compresses many = AGENT DETECTION = DIR. DETECTION

accesses to read-runs of size 9 (pointed out in the graph). ThifFIGURE 4. Normalized speedup (ovescl) for SPARSEIN 2 and 3
number corresponds toc3ow agents plus an extra node: for any dimensions (16 to 128 nodes).

widely shared data block in the 2-dimensional 128-node system (8

by 16 nodes) there are 8 agents covering all nodes except the da@imensions). This is becausearsEactually contains more widely
block’s home node. In contrastpMBINING which does not per-  shared data than just the vecXorndAGENT DETECTIONcan handle
form as well manages to compress the read-runs from a size of 12&em at run-timeAGENT DETECTION performs up to 1.29 times
down to a size of about 38GENT DETECTION manages to com-  faster thanscli in 2 dimensions and up to 1.33 times faster in 3
press most of the large read-runs to a size of 24. This means thadimensionsCOMBINING fails to provide any significant performance
before all 8sLow agents are invoked for a widely shared block, 16 improvement andIRECTORY DETECTION performs on a par with
requests slip by and reach the direct@mRECTORY DETECTION staticGLOW. PC PREDICTIONIS again the most successful (speedups
eliminates the largest read-runs and converts them to read-runs oéf up to 1.33 and 1.50 for 2 and 3 dimensions respectively).

iz mlary o saio cu, Howeve, thy il cave 8 S0 ure  shows th compression o et gan on

: : 28 nodes with a 2-dimensional netwod®MBINING does not per-
fectﬁ_d.Pc PRED:(C';’]IOII\IgIVGS the gleanllest s_pectrfugn of read-runs 7. very well forspARsEand this is also evident in its failure to
pushing most of the large ones down to a size of 9. affect the large read-runssENT DETECTIONSpreads the largest read-
SPARSEScales to 128 nodes for both 2- and 3-dimensional networksruns all over the read-run spectrum with a center around 60. This
although the increase in performance from 64 to 128 nodes in 2means that the number of requests that slip through the agents before
dimensions is negligible (see Table 1 and Figure 4). For this pro-they detect widely shared data has significant variance. Statig

gram AGENT DETECTION outperforms staticLow (in the 64- and andpc PREDICTIONperform very well, most of the time allowing the
128-node systems in 2 dimensions and in the 128-node system in 8lirectories to see only 9 requests(®w agents and the local node).
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dimensions (16 to 128 nodes).

APspPandTc exhibit similar behavior (we present graphically only
the Apsp speedups in Figure 6). Withcl, Apsp does not scale

32
&2 pC PREDICTION

beyond 64 nodes artdt does not scale beyond 32 nodes. Ar@R,

staticGLOW is up to 2.20 times faster thani in 2 dimensions and
up to 2.59 times faster in 3 dimensions. Similarly, forstatic
GLOW is up to 2.22 and up to 2.64 times faster tharfor 2 and 3
dimensions respectively. For both programmeMBINING and
DIRECTORY DETECTIONfail to show any performance improvement

while AGENT DETECTION performs closely to the stat@.ow. PC
PREDICTION performs almost as well as statioow.

Since Apsp and TC exhibit similar behavior we only demonstrate
read-run compression fersp (Figure 7). A significant percentage
of the reads of the program correspond to large read-runs. AS...
expectedCOMBINING is not successful in hiding accesses from the
directories. Although it shifts accesses to smaller read-runs, it is not-=

enough to make a difference in performamgENT DETECTION iS

quite successful compressing the read-runs to a size of around 38
(this translates to about 22 requests slipping troughdv agents ’
while the rest are intercepted). Stagicow works very well leaving
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only read-runs of size 9 (similarly to the previous two programs). A dimensions). Y-axis (no. of accessa®)t in logarithmic scale.

common characteristic of ta@spandTc programs is that their data
blocks are widely shared only once. Not surprisirgiyeCTORY
DETECTION fails to change the read-runs of the program. The read
run histogram folrCc PREDICTIONIS almost a carbon copy of the
staticGLow and this explains their almost identical performance.

nizing the top of the tree as widely shared and the latter identifying

the instructions that access the top of the tree. The best speedups
~are 1.27 foDIRECTORY DETECTIONand 1.3 fotPC PREDICTIONfoOr

32 nodes. Read-run analysis shows that all schemes exhibit differ-

ent behavior foBARNES than for the other benchmarks (Figure 9).

BARNES is not affected much by the dimensionality of the network All schemes redistribute both large and small read-runs among the
and does not speedup considerably with higher numbers of processmaller read-runs but without any particular peaks and in various
sors (Table 1). This is due to the very small dataset we were able télegrees of SUCCESSIRECTORY DETECTIONandPC PREDICTIONAO

simulate with our tools (4K particles). With larger datasetsNeSs

the best job in reducing the large read-runs.

should exhibit better scaling. Nevertheless, the schemes we proo summarize the resultssENT DETECTIONCONSistently tracks the

pose show speedups ol (Figure 8) —as much as 1.3 for 32

nodes.COMBINING andAGENT DETECTION as well as staticLow

do not show significant speedups oger. However,DIRECTORY
DETECTION andPG-PREDICTION work very well, the former recog-

performance of the statisLow while COMBINING only works for

one programAuss). The results show thaoMBINING is indeed
sensitive to the congestion characteristics of the application. The
behavior ofCOMBINING also changes depending on the network



characteristics (e.g., link and switch latency, bandwidth) while the [2] A. Agarwal, M. Horowitz and J. Hennessy, “An Evaluation of
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